Schulz, R., Bub, S., Petschick, L. L., Stehle, S. & Wolfram, J. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 372, 81–84 (2021).
Google Scholar
Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).
Google Scholar
FAO. Pesticides Use (FAOSTAT, accessed February 2023); .
Ippolito, A. et al. Modeling global distribution of agricultural insecticides in surface waters. Environ. Pollut. 198, 54–60 (2015).
Google Scholar
FAO Land Use Statistics and Indicators. Global, Regional and Country Trends 1990–2019. FAOSTAT Analytical Brief Series No. 28 (FAO, 2021); https://www.fao.org/documents/card/en/c/cb6033en/.
Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).
Google Scholar
FAO. Fertilizers by Nutrient (FAOSTAT, accessed August 2020); https://www.fao.org/faostat/en/#data/RFN.
FAO. Pesticides Use (FAOSTAT, accessed August 2020); .
FAO. Land Use (FAOSTAT, accessed August 2020); https://www.fao.org/faostat/en/#data/RL.
Schlesinger, W. H. On the fate of anthropogenic nitrogen. Proc. Natl Acad. Sci. USA 106, 203–208 (2009).
Google Scholar
Beusen, A. H., Bouwman, A. F., Van Beek, L. P., Mogollón, J. M. & Middelburg, J. J. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13, 2441–2451 (2016).
Google Scholar
Silva, V. et al. Pesticide residues in European agricultural soils—a hidden reality unfolded. Sci. Total Environ. 653, 1532–1545 (2019).
Google Scholar
Stehle, S., Bub, S. & Schulz, R. Compilation and analysis of global surface water concentrations for individual insecticide compounds. Sci. Total Environ. 639, 516–525 (2018).
Google Scholar
de Souza, R. M. et al. Occurrence, impacts and general aspects of pesticides in surface water: a review. Process Saf. Environ. Prot. 135, 22–37 (2020).
Google Scholar
Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature (2010).
Waterbase v2020—WISE6. EEA (accessed September 2021).
Deacon, J., Lee, C., Norman, J. & Reutter, D. Nutrient and pesticide data collected from the USGS National Water Quality Network and previous networks, 1963–2016. US Geol. Surv. 10, F73777K4 (2017).
Freshwater Quality Surveillance Data—Pacific Basin. Government of Canada (accessed January 2023).
Catchment Loads Monitoring Program Pesticide Reporting Portal: Water Quality and Investigations. Department of Environment and Science, Brisbane, Australia (accessed December 2022).
Eichelberger, J. W. & Lichtenberg, J. J. Persistence of pesticides in river water. Environ. Sci. Technol. 5, 541–544 (1971).
Google Scholar
Gassmann, M. Modelling the fate of pesticide transformation products from plot to catchment scale—state of knowledge and future challenges. Front. Environ. Sci. 9, 717738 (2021).
Morselli, M. et al. Predicting pesticide fate in small cultivated mountain watersheds using the DynAPlus model: toward improved assessment of peak exposure. Sci. Total Environ. 615, 307–318 (2018).
Google Scholar
Bertuzzo, E., Thomet, M., Botter, G. & Rinaldo, A. Catchment-scale herbicides transport: theory and application. Adv. Water Res. 52, 232–242 (2013).
Google Scholar
Fohrer, N., Dietrich, A., Kolychalow, O. & Ulrich, U. Assessment of the environmental fate of the herbicides flufenacet and metazachlor with the SWAT model. J. Environ. Qual. 43, 75–85 (2014).
Google Scholar
Wittmer, I. K., Bader, H. P., Scheidegger, R. & Stamm, C. REXPO: a catchment model designed to understand and simulate the loss dynamics of plant protection products and biocides from agricultural and urban areas. J. Hydrol. 533, 486–514 (2016).
Google Scholar
Maggi, F. BRTSim v5.0b, A General-Purpose Multiphase and Multispecies Computational Solver for Biogeochemical Reaction-Advection-Dispersion Processes in Porous and Non-porous Media: User Manual and Technical Guide (BRTSim project, 2022); archived versions at https://sites.google.com/site/thebrtsimproject/downloads?authuser=0.
Flury, M., Leuenberger, J., Studer, B. & Flühler, H. Transport of anions and herbicides in a loamy and a sandy field soil. Water Resour. Res. 31, 823–835 (1995).
Google Scholar
Flury, M. Experimental evidence of transport of pesticides through field soils—a review. J. Environ. Qual. 25, 25–45 (1996).
Google Scholar
Vonberg, D., Vanderborght, J., & Rüde, T. R. Atrazine in the Environment 20 Years After its Ban: Long-term Monitoring of a Shallow Aquifer (in Western Germany) and Soil Residue Analysis (Deutsche Nationalbibliothek, 2015); http://publications.rwth-aachen.de/record/484062/files/484062.pdf.
EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance metam. EFSA J. 9, 2334 (2011).
Larson, B. T., Capel, P. D., Goolsby, D. A., Zaugg, S. D. & Sandstrom, M. W. Relations between pesticide use and riverine flux in the Mississippi river basin. Chemosphere 31, 3305–3321 (1995).
Google Scholar
la Cecilia, D. et al. Continuous high-frequency pesticide monitoring to observe the unexpected and the overlooked. Water Res. X 13, 100125 (2021).
Google Scholar
Ippolito, A. & Fait, G. Pesticides in surface waters: from edge-of-field to global modelling. Curr. Opin. Environ. Sustain. 36, 78–84 (2019).
Google Scholar
Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl Acad. Sci. USA 110, 11039–11043 (2013).
Google Scholar
Ryberg, K. R. & Gilliom, R. J. Trends in pesticide concentrations and use for major rivers of the United States. Sci. Total Environ. 538, 431–444 (2015).
Google Scholar
Sustainable Development Goals: Indicator 2.4.1—Proportion of Agricultural Area Under Productive and Sustainable Agriculture. FAO (accessed July 2022).
Lehner, B., Verdin, K. & Jarvis, A. HydroRIVERS v1.0—Technical Documentation (HydroSheds, accessed August 2020); https://www.hydrosheds.org/page/hydrorivers.
Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles (2008).
Guglielmo, M., Tang, F. H., Pasut, C. & Maggi, F. SOIL-WATERGRIDS, mapping dynamic changes in soil moisture and depth of water table from 1970 to 2014. Sci. Data 8, 263 (2021).
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE (2017).
de Sousa, L. M. et al. SoilGrids 2.0: producing quality-assessed soil information for the globe. Soil Discuss. 1, 10.5194 (2020).
Zhang, Y., Schaap, M. G. & Zha, Y. A high-resolution global map of soil hydraulic properties produced by a hierarchical parameterization of a physically based water retention model. Water Resour. Res. 54, 9774–9790 (2018).
Google Scholar
Brooks, R. H. & Corey, A. T. Hydraulic properties of porous media and their relation to drainage design. Trans. ASABE 7, 26–28 (1964).
Google Scholar
Dai, Y. et al. A global high-resolution data set of soil hydraulic and thermal properties for land surface modeling. J. Adv. Model. 11, 2996–3023 (2019).
Tang, F. H. & Maggi, F. Pesticide mixtures in soil: a global outlook. Environ. Res. Lett. 16, 044051 (2021).
Google Scholar
Gruber, A., Scanlon, T., Schalie, R., Wagner, W. & Dorigo, W. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 11, 717–739 (2019).
Google Scholar
Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).
Google Scholar
Dorigo, W. A. et al. Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J. (2013).
Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).
Google Scholar
Menne, M. J. et al. Global Historical Climatology Network—Daily (GHCN-Daily), Version 3. NOAA/National Climatic Data Center (2018).
Andreadis, K. M., Schumann, G. J. P. & Pavelsky, T. A simple global river bankfull width and depth database. Water Resour. Res. 49, 7164–7168 (2013).
Google Scholar
Harrigan, S. et al. GloFAS-ERA5 operational global river discharge reanalysis 1979–present. Earth Syst. Sci. Data 12, 2043–2060 (2020).
Google Scholar
Maggi, F., Tang, F. H., la Cecilia, D. & McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 170 (2019).
Baker, N. T. Estimated Annual Agricultural Pesticide Use by Major Crop or Crop Group for States of the Conterminous United States,1992–2016. US Geological Survey (2018).
FAO. Pesticides Use (FAOSTAT, accessed 2019); (accessed 2019).
ISAAA’s GM Approval Database (ISAAA, 2018); http://www.isaaa.org/gmapprovaldatabase/
PLANT EU Pesticides Database (European Commission, 2016); https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances.
Watts, M. PAN International Consolidated List of Banned Pesticides. Pesticide Network Action International (2019).
Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).
Maggi, F., la Cecilia, D., Tang, F. H. & McBratney, A. The global environmental hazard of glyphosate use. Sci. Total Environ. 717, 137167 (2020).
Google Scholar
Trevisan, M., Di Guardo, A. & Balderacchi, M. An environmental indicator to drive sustainable pest management practices. Environ. Model. Softw. 24, 994–1002 (2009).
Google Scholar
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
Dorigo, W. A. et al. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 15, 1675–1698 (2011).
Google Scholar
Rodell, M. et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).
Google Scholar
Hong, Y. & Adler, R. F. Estimation of global SCS curve numbers using satellite remote sensing and geospatial data. Int. J. Remote Sens. 29, 471–477 (2008).
Google Scholar
Edwards, M. Data Announcement 88-MGG-02: Digital Relief of the Surface of the Earth (NOAA, 988).
Li, M. et al. The carbon flux of global rivers: a re-evaluation of amount and spatial patterns. Ecol. Indic. 80, 40–51 (2017).
Google Scholar
Corcoran, S. et al. Pesticides in surface waters in argentina monitored using polar organic chemical integrative samplers. Bull. Environ. Contam. Toxicol. 104, 21–26 (2020).
Rico, A. et al. Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon. Chemosphere 291, 132821 (2022).
Acayaba, R. D. A. et al. Occurrence of pesticides in waters from the largest sugar cane plantation region in the world. Environ. Sci. Pollut. Res. 28, 9824–9835 (2021).
Fang, W. et al. A critical review of synthetic chemicals in surface waters of the US, the EU and China. Environ. Int. 131, 104994 (2019).
Xu, M. et al. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. Ecotoxicol. Environ. Saf. 175, 289–298 (2019).
Eissa, F., Al-Sisi, M. & Ghanem, K. Occurrence, human health, and ecotoxicological risk assessment of pesticides in surface waters of the River Nile’s Rosetta Branch, Egypt. Environ. Sci. Pollut. Res. 28, 55511–55525 (2021).
Sarker, S. et al. Level of pesticides contamination in the major river systems: A review on South Asian countries perspective. Heliyon 7, e07270 (2021).