September 24, 2023


  • Schulz, R., Bub, S., Petschick, L. L., Stehle, S. & Wolfram, J. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 372, 81–84 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

    Article 
    PubMed 

    Google Scholar 

  • FAO. Pesticides Use (FAOSTAT, accessed February 2023); .

  • Ippolito, A. et al. Modeling global distribution of agricultural insecticides in surface waters. Environ. Pollut. 198, 54–60 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • FAO Land Use Statistics and Indicators. Global, Regional and Country Trends 1990–2019. FAOSTAT Analytical Brief Series No. 28 (FAO, 2021); https://www.fao.org/documents/card/en/c/cb6033en/.

  • Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).

    Article 
    CAS 

    Google Scholar 

  • FAO. Fertilizers by Nutrient (FAOSTAT, accessed August 2020); https://www.fao.org/faostat/en/#data/RFN.

  • FAO. Pesticides Use (FAOSTAT, accessed August 2020); .

  • FAO. Land Use (FAOSTAT, accessed August 2020); https://www.fao.org/faostat/en/#data/RL.

  • Schlesinger, W. H. On the fate of anthropogenic nitrogen. Proc. Natl Acad. Sci. USA 106, 203–208 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beusen, A. H., Bouwman, A. F., Van Beek, L. P., Mogollón, J. M. & Middelburg, J. J. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13, 2441–2451 (2016).

    Article 
    CAS 

    Google Scholar 

  • Silva, V. et al. Pesticide residues in European agricultural soils—a hidden reality unfolded. Sci. Total Environ. 653, 1532–1545 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stehle, S., Bub, S. & Schulz, R. Compilation and analysis of global surface water concentrations for individual insecticide compounds. Sci. Total Environ. 639, 516–525 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Souza, R. M. et al. Occurrence, impacts and general aspects of pesticides in surface water: a review. Process Saf. Environ. Prot. 135, 22–37 (2020).

    Article 

    Google Scholar 

  • Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature (2010).

  • Waterbase v2020—WISE6. EEA (accessed September 2021).

  • Deacon, J., Lee, C., Norman, J. & Reutter, D. Nutrient and pesticide data collected from the USGS National Water Quality Network and previous networks, 1963–2016. US Geol. Surv. 10, F73777K4 (2017).

    Google Scholar 

  • Freshwater Quality Surveillance Data—Pacific Basin. Government of Canada (accessed January 2023).

  • Catchment Loads Monitoring Program Pesticide Reporting Portal: Water Quality and Investigations. Department of Environment and Science, Brisbane, Australia (accessed December 2022).

  • Eichelberger, J. W. & Lichtenberg, J. J. Persistence of pesticides in river water. Environ. Sci. Technol. 5, 541–544 (1971).

    Article 
    CAS 

    Google Scholar 

  • Gassmann, M. Modelling the fate of pesticide transformation products from plot to catchment scale—state of knowledge and future challenges. Front. Environ. Sci. 9, 717738 (2021).

  • Morselli, M. et al. Predicting pesticide fate in small cultivated mountain watersheds using the DynAPlus model: toward improved assessment of peak exposure. Sci. Total Environ. 615, 307–318 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bertuzzo, E., Thomet, M., Botter, G. & Rinaldo, A. Catchment-scale herbicides transport: theory and application. Adv. Water Res. 52, 232–242 (2013).

    Article 
    CAS 

    Google Scholar 

  • Fohrer, N., Dietrich, A., Kolychalow, O. & Ulrich, U. Assessment of the environmental fate of the herbicides flufenacet and metazachlor with the SWAT model. J. Environ. Qual. 43, 75–85 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Wittmer, I. K., Bader, H. P., Scheidegger, R. & Stamm, C. REXPO: a catchment model designed to understand and simulate the loss dynamics of plant protection products and biocides from agricultural and urban areas. J. Hydrol. 533, 486–514 (2016).

    Article 

    Google Scholar 

  • Maggi, F. BRTSim v5.0b, A General-Purpose Multiphase and Multispecies Computational Solver for Biogeochemical Reaction-Advection-Dispersion Processes in Porous and Non-porous Media: User Manual and Technical Guide (BRTSim project, 2022); archived versions at https://sites.google.com/site/thebrtsimproject/downloads?authuser=0.

  • Flury, M., Leuenberger, J., Studer, B. & Flühler, H. Transport of anions and herbicides in a loamy and a sandy field soil. Water Resour. Res. 31, 823–835 (1995).

    Article 
    CAS 

    Google Scholar 

  • Flury, M. Experimental evidence of transport of pesticides through field soils—a review. J. Environ. Qual. 25, 25–45 (1996).

    Article 
    CAS 

    Google Scholar 

  • Vonberg, D., Vanderborght, J., & Rüde, T. R. Atrazine in the Environment 20 Years After its Ban: Long-term Monitoring of a Shallow Aquifer (in Western Germany) and Soil Residue Analysis (Deutsche Nationalbibliothek, 2015); http://publications.rwth-aachen.de/record/484062/files/484062.pdf.

  • EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance metam. EFSA J. 9, 2334 (2011).

  • Larson, B. T., Capel, P. D., Goolsby, D. A., Zaugg, S. D. & Sandstrom, M. W. Relations between pesticide use and riverine flux in the Mississippi river basin. Chemosphere 31, 3305–3321 (1995).

    Article 
    CAS 

    Google Scholar 

  • la Cecilia, D. et al. Continuous high-frequency pesticide monitoring to observe the unexpected and the overlooked. Water Res. X 13, 100125 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ippolito, A. & Fait, G. Pesticides in surface waters: from edge-of-field to global modelling. Curr. Opin. Environ. Sustain. 36, 78–84 (2019).

    Article 

    Google Scholar 

  • Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl Acad. Sci. USA 110, 11039–11043 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryberg, K. R. & Gilliom, R. J. Trends in pesticide concentrations and use for major rivers of the United States. Sci. Total Environ. 538, 431–444 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sustainable Development Goals: Indicator 2.4.1—Proportion of Agricultural Area Under Productive and Sustainable Agriculture. FAO (accessed July 2022).

  • Lehner, B., Verdin, K. & Jarvis, A. HydroRIVERS v1.0—Technical Documentation (HydroSheds, accessed August 2020); https://www.hydrosheds.org/page/hydrorivers.

  • Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles (2008).

  • Guglielmo, M., Tang, F. H., Pasut, C. & Maggi, F. SOIL-WATERGRIDS, mapping dynamic changes in soil moisture and depth of water table from 1970 to 2014. Sci. Data 8, 263 (2021).

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE (2017).

  • de Sousa, L. M. et al. SoilGrids 2.0: producing quality-assessed soil information for the globe. Soil Discuss. 1, 10.5194 (2020).

    Google Scholar 

  • Zhang, Y., Schaap, M. G. & Zha, Y. A high-resolution global map of soil hydraulic properties produced by a hierarchical parameterization of a physically based water retention model. Water Resour. Res. 54, 9774–9790 (2018).

    Article 

    Google Scholar 

  • Brooks, R. H. & Corey, A. T. Hydraulic properties of porous media and their relation to drainage design. Trans. ASABE 7, 26–28 (1964).

    Article 

    Google Scholar 

  • Dai, Y. et al. A global high-resolution data set of soil hydraulic and thermal properties for land surface modeling. J. Adv. Model. 11, 2996–3023 (2019).

    Google Scholar 

  • Tang, F. H. & Maggi, F. Pesticide mixtures in soil: a global outlook. Environ. Res. Lett. 16, 044051 (2021).

    CAS 

    Google Scholar 

  • Gruber, A., Scanlon, T., Schalie, R., Wagner, W. & Dorigo, W. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 11, 717–739 (2019).

    Article 

    Google Scholar 

  • Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Article 

    Google Scholar 

  • Dorigo, W. A. et al. Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J. (2013).

  • Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Menne, M. J. et al. Global Historical Climatology Network—Daily (GHCN-Daily), Version 3. NOAA/National Climatic Data Center (2018).

  • Andreadis, K. M., Schumann, G. J. P. & Pavelsky, T. A simple global river bankfull width and depth database. Water Resour. Res. 49, 7164–7168 (2013).

    Article 

    Google Scholar 

  • Harrigan, S. et al. GloFAS-ERA5 operational global river discharge reanalysis 1979–present. Earth Syst. Sci. Data 12, 2043–2060 (2020).

    Article 

    Google Scholar 

  • Maggi, F., Tang, F. H., la Cecilia, D. & McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 170 (2019).

  • Baker, N. T. Estimated Annual Agricultural Pesticide Use by Major Crop or Crop Group for States of the Conterminous United States,1992–2016. US Geological Survey (2018).

  • FAO. Pesticides Use (FAOSTAT, accessed 2019); (accessed 2019).

  • ISAAA’s GM Approval Database (ISAAA, 2018); http://www.isaaa.org/gmapprovaldatabase/

  • PLANT EU Pesticides Database (European Commission, 2016); https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances.

  • Watts, M. PAN International Consolidated List of Banned Pesticides. Pesticide Network Action International (2019).

  • Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).

    Google Scholar 

  • Maggi, F., la Cecilia, D., Tang, F. H. & McBratney, A. The global environmental hazard of glyphosate use. Sci. Total Environ. 717, 137167 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trevisan, M., Di Guardo, A. & Balderacchi, M. An environmental indicator to drive sustainable pest management practices. Environ. Model. Softw. 24, 994–1002 (2009).

    Article 

    Google Scholar 

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

  • Dorigo, W. A. et al. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 15, 1675–1698 (2011).

    Article 

    Google Scholar 

  • Rodell, M. et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

    Article 

    Google Scholar 

  • Hong, Y. & Adler, R. F. Estimation of global SCS curve numbers using satellite remote sensing and geospatial data. Int. J. Remote Sens. 29, 471–477 (2008).

    Article 

    Google Scholar 

  • Edwards, M. Data Announcement 88-MGG-02: Digital Relief of the Surface of the Earth (NOAA, 988).

  • Li, M. et al. The carbon flux of global rivers: a re-evaluation of amount and spatial patterns. Ecol. Indic. 80, 40–51 (2017).

    Article 
    CAS 

    Google Scholar 

  • Corcoran, S. et al. Pesticides in surface waters in argentina monitored using polar organic chemical integrative samplers. Bull. Environ. Contam. Toxicol. 104, 21–26 (2020).

  • Rico, A. et al. Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon. Chemosphere 291, 132821 (2022).

  • Acayaba, R. D. A. et al. Occurrence of pesticides in waters from the largest sugar cane plantation region in the world. Environ. Sci. Pollut. Res. 28, 9824–9835 (2021).

  • Fang, W. et al. A critical review of synthetic chemicals in surface waters of the US, the EU and China. Environ. Int. 131, 104994 (2019).

  • Xu, M. et al. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. Ecotoxicol. Environ. Saf. 175, 289–298 (2019).

  • Eissa, F., Al-Sisi, M. & Ghanem, K. Occurrence, human health, and ecotoxicological risk assessment of pesticides in surface waters of the River Nile’s Rosetta Branch, Egypt. Environ. Sci. Pollut. Res. 28, 55511–55525 (2021).

  • Sarker, S. et al. Level of pesticides contamination in the major river systems: A review on South Asian countries perspective. Heliyon 7, e07270 (2021).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *